如何在NumPy中高效地找到平滑多维数组的局部最小值?
如何在NumPy中高效地找到平滑多维数组的局部最小值?
假设我有一个NumPy数组,其中包含对连续可微函数的评估,我想找出局部极小值。没有噪音,因此,其值小于所有邻居的值的每个点都符合我的局部最小值标准。
我有以下列表推导式,该式适用于二维数组,不考虑边界上的潜在最小值:
import numpy as N def local_minima(array2d): local_minima = [ index for index in N.ndindex(array2d.shape) if index[0] > 0 if index[1] > 0 if index[0] < array2d.shape[0] - 1 if index[1] < array2d.shape[1] - 1 if array2d[index] < array2d[index[0] - 1, index[1] - 1] if array2d[index] < array2d[index[0] - 1, index[1]] if array2d[index] < array2d[index[0] - 1, index[1] + 1] if array2d[index] < array2d[index[0], index[1] - 1] if array2d[index] < array2d[index[0], index[1] + 1] if array2d[index] < array2d[index[0] + 1, index[1] - 1] if array2d[index] < array2d[index[0] + 1, index[1]] if array2d[index] < array2d[index[0] + 1, index[1] + 1] ] return local_minima
然而,这很慢。我还想让它适用于任意维度的数组。例如,有没有一种简单的方法可以获取数组中任意维度点的所有邻居?或者我完全错误地处理了这个问题?我应该使用numpy.gradient()
替代吗?
admin 更改状态以发布 2023年5月24日
通过对一个任意维度的数组使用Ivan的detect_peaks函数,可以找到局部最小值的位置,需要进行轻微修改:
import numpy as np import scipy.ndimage.filters as filters import scipy.ndimage.morphology as morphology def detect_local_minima(arr): # https://stackoverflow.com/questions/3684484/peak-detection-in-a-2d-array/3689710#3689710 """ Takes an array and detects the troughs using the local maximum filter. Returns a boolean mask of the troughs (i.e. 1 when the pixel's value is the neighborhood maximum, 0 otherwise) """ # define an connected neighborhood # http://www.scipy.org/doc/api_docs/SciPy.ndimage.morphology.html#generate_binary_structure neighborhood = morphology.generate_binary_structure(len(arr.shape),2) # apply the local minimum filter; all locations of minimum value # in their neighborhood are set to 1 # http://www.scipy.org/doc/api_docs/SciPy.ndimage.filters.html#minimum_filter local_min = (filters.minimum_filter(arr, footprint=neighborhood)==arr) # local_min is a mask that contains the peaks we are # looking for, but also the background. # In order to isolate the peaks we must remove the background from the mask. # # we create the mask of the background background = (arr==0) # # a little technicality: we must erode the background in order to # successfully subtract it from local_min, otherwise a line will # appear along the background border (artifact of the local minimum filter) # http://www.scipy.org/doc/api_docs/SciPy.ndimage.morphology.html#binary_erosion eroded_background = morphology.binary_erosion( background, structure=neighborhood, border_value=1) # # we obtain the final mask, containing only peaks, # by removing the background from the local_min mask detected_minima = local_min ^ eroded_background return np.where(detected_minima)
可以像这样使用:
arr=np.array([[[0,0,0,-1],[0,0,0,0],[0,0,0,0],[0,0,0,0],[-1,0,0,0]], [[0,0,0,0],[0,-1,0,0],[0,0,0,0],[0,0,0,-1],[0,0,0,0]]]) local_minima_locations = detect_local_minima(arr) print(arr) # [[[ 0 0 0 -1] # [ 0 0 0 0] # [ 0 0 0 0] # [ 0 0 0 0] # [-1 0 0 0]] # [[ 0 0 0 0] # [ 0 -1 0 0] # [ 0 0 0 0] # [ 0 0 0 -1] # [ 0 0 0 0]]]
这表示最小值出现的索引为[0,0,3],[0,4,0],[1,1,1]和[1,3,3]:
print(local_minima_locations) # (array([0, 0, 1, 1]), array([0, 4, 1, 3]), array([3, 0, 1, 3])) print(arr[local_minima_locations]) # [-1 -1 -1 -1]