获取二维数组中高于某个值的局部最大值的坐标

15 浏览
0 Comments

获取二维数组中高于某个值的局部最大值的坐标

from PIL import Image
import numpy as np
from scipy.ndimage.filters import maximum_filter
import pylab
# the picture (256 * 256 pixels) contains bright spots of which I wanna get positions
# problem: data has high background around value 900 - 1000
im = Image.open('slice0000.png')
data = np.array(im)
# as far as I understand, data == maximum_filter gives True-value for pixels
# being the brightest in their neighborhood (here 10 * 10 pixels)
maxima = (data == maximum_filter(data,10))
# How can I get only maxima, outstanding the background a certain value, let's say 500 ?

我不太明白scipy.ndimage.filters.maximum_filter()函数。是否有一种方法只获取斑点内的像素坐标而不包括背景?

http://i.stack.imgur.com/RImHW.png(16位灰度图像,256*256像素)

admin 更改状态以发布 2023年5月25日
0
0 Comments

现在,使用skimage可以完成此操作。

from skimage.feature import peak_local_max
xy = peak_local_max(data, min_distance=2,threshold_abs=1500)

在我的计算机上,对于VGA图像大小,它的运行速度比上述解决方案快4倍,并在某些情况下返回更准确的位置。

0
0 Comments

import numpy as np
import scipy
import scipy.ndimage as ndimage
import scipy.ndimage.filters as filters
import matplotlib.pyplot as plt
fname = '/tmp/slice0000.png'
neighborhood_size = 5
threshold = 1500
data = scipy.misc.imread(fname)
data_max = filters.maximum_filter(data, neighborhood_size)
maxima = (data == data_max)
data_min = filters.minimum_filter(data, neighborhood_size)
diff = ((data_max - data_min) > threshold)
maxima[diff == 0] = 0
labeled, num_objects = ndimage.label(maxima)
slices = ndimage.find_objects(labeled)
x, y = [], []
for dy,dx in slices:
    x_center = (dx.start + dx.stop - 1)/2
    x.append(x_center)
    y_center = (dy.start + dy.stop - 1)/2    
    y.append(y_center)
plt.imshow(data)
plt.savefig('/tmp/data.png', bbox_inches = 'tight')
plt.autoscale(False)
plt.plot(x,y, 'ro')
plt.savefig('/tmp/result.png', bbox_inches = 'tight')

给定 data.png:

enter image description here

上述程序使用threshold = 1500产生了result.png。降低threshold以捕捉更多局部极值:

enter image description here

参考资料:

0