TypeError: ufunc 'add' did not contain a loop with signature matching types 类型错误:ufunc 'add' 不包含与类型匹配的循环签名。
TypeError: ufunc 'add' did not contain a loop with signature matching types 类型错误:ufunc 'add' 不包含与类型匹配的循环签名。
我正在创建句子的词袋表示。然后,我将句子中存在的单词与文件“vectors.txt”进行比较,以获取它们的嵌入向量。在获取句子中每个存在的单词的向量后,我将这些向量的平均值取出。这是我的代码:
import nltk import numpy as np from nltk import FreqDist from nltk.corpus import brown news = brown.words(categories='news') news_sents = brown.sents(categories='news') fdist = FreqDist(w.lower() for w in news) vocabulary = [word for word, _ in fdist.most_common(10)] num_sents = len(news_sents) def averageEmbeddings(sentenceTokens, embeddingLookupTable): listOfEmb=[] for token in sentenceTokens: embedding = embeddingLookupTable[token] listOfEmb.append(embedding) return sum(np.asarray(listOfEmb)) / float(len(listOfEmb)) embeddingVectors = {} with open("D:\\Embedding\\vectors.txt") as file: for line in file: (key, *val) = line.split() embeddingVectors[key] = val for i in range(num_sents): features = {} for word in vocabulary: features[word] = int(word in news_sents[i]) print(features) print(list(features.values())) sentenceTokens = [] for key, value in features.items(): if value == 1: sentenceTokens.append(key) sentenceTokens.remove(".") print(sentenceTokens) print(averageEmbeddings(sentenceTokens, embeddingVectors)) print(features.keys())
不确定为什么,但我遇到了这个错误:
TypeError Traceback (most recent call last)in () 39 sentenceTokens.remove(".") 40 print(sentenceTokens) ---> 41 print(averageEmbeddings(sentenceTokens, embeddingVectors)) 42 43 print(features.keys()) in averageEmbeddings(sentenceTokens, embeddingLookupTable) 18 listOfEmb.append(embedding) 19 ---> 20 return sum(np.asarray(listOfEmb)) / float(len(listOfEmb)) 21 22 embeddingVectors = {} TypeError: ufunc 'add' did not contain a loop with signature matching types dtype('
附注:嵌入向量的示例如下:
the 0.011384 0.010512 -0.008450 -0.007628 0.000360 -0.010121 0.004674 -0.000076
of 0.002954 0.004546 0.005513 -0.004026 0.002296 -0.016979 -0.011469 -0.009159
and 0.004691 -0.012989 -0.003122 0.004786 -0.002907 0.000526 -0.006146 -0.003058
one 0.014722 -0.000810 0.003737 -0.001110 -0.011229 0.001577 -0.007403 -0.005355
in -0.001046 -0.008302 0.010973 0.009608 0.009494 -0.008253 0.001744 0.003263
使用np.sum后,我得到了这个错误:
TypeError Traceback (most recent call last)in () 40 sentenceTokens.remove(".") 41 print(sentenceTokens) ---> 42 print(averageEmbeddings(sentenceTokens, embeddingVectors)) 43 44 print(features.keys()) in averageEmbeddings(sentenceTokens, embeddingLookupTable) 18 listOfEmb.append(embedding) 19 ---> 20 return np.sum(np.asarray(listOfEmb)) / float(len(listOfEmb)) 21 22 embeddingVectors = {} C:\Anaconda3\lib\site-packages\numpy\core\fromnumeric.py in sum(a, axis, dtype, out, keepdims) 1829 else: 1830 return _methods._sum(a, axis=axis, dtype=dtype, -> 1831 out=out, keepdims=keepdims) 1832 1833 C:\Anaconda3\lib\site-packages\numpy\core\_methods.py in _sum(a, axis, dtype, out, keepdims) 30 31 def _sum(a, axis=None, dtype=None, out=None, keepdims=False): ---> 32 return umr_sum(a, axis, dtype, out, keepdims) 33 34 def _prod(a, axis=None, dtype=None, out=None, keepdims=False): TypeError: cannot perform reduce with flexible type