ConvergenceWarning: lbfgs失败收敛(status=1):STOP: 总迭代次数达到限制
ConvergenceWarning: lbfgs失败收敛(status=1):STOP: 总迭代次数达到限制
我有一个包含数值和分类数据的数据集,我想根据患者的医疗特征预测不良结果。我为数据集定义了一个预测流程,如下所示:
X = dataset.drop(columns=['target']) y = dataset['target'] # 定义数值和分类转换器 numeric_transformer = Pipeline(steps=[ ('knnImputer', KNNImputer(n_neighbors=2, weights="uniform")), ('scaler', StandardScaler())]) categorical_transformer = Pipeline(steps=[ ('imputer', SimpleImputer(strategy='constant', fill_value='missing')), ('onehot', OneHotEncoder(handle_unknown='ignore'))]) # 将对象列分配给分类转换器,将其余列分配给数值转换器 preprocessor = ColumnTransformer(transformers=[ ('num', numeric_transformer, selector(dtype_exclude="object")), ('cat', categorical_transformer, selector(dtype_include="object")) ]) # 将分类器追加到预处理流程中 # 现在我们有一个完整的预测流程 clf = Pipeline(steps=[('preprocessor', preprocessor), ('classifier', LogisticRegression())]) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) clf.fit(X_train, y_train) print("模型得分: %.3f" % clf.score(X_test, y_test))
然而,运行此代码时,我收到以下警告信息:
ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG) 模型得分: 0.988
有人能解释一下这个警告是什么意思吗?我对机器学习还是新手,对于如何改进预测模型还有些迷茫。正如你可以从numeric_transformer中看到的,我通过标准化对数据进行了缩放。我也对模型得分为何如此高而感到困惑,不知道这是好事还是坏事。