LogisticRegression: Unknown label type: 'continuous' using sklearn in python

9 浏览
0 Comments

LogisticRegression: Unknown label type: 'continuous' using sklearn in python

我有以下代码来测试sklearn python库中一些最受欢迎的机器学习算法:

import numpy as np
from sklearn import metrics, svm
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
trainingData = np.array([[2.3, 4.3, 2.5], [1.3, 5.2, 5.2], [3.3, 2.9, 0.8], [3.1, 4.3, 4.0]])
trainingScores = np.array([3.4, 7.5, 4.5, 1.6])
predictionData = np.array([[2.5, 2.4, 2.7], [2.7, 3.2, 1.2]])
clf = LinearRegression()
clf.fit(trainingData, trainingScores)
print("LinearRegression")
print(clf.predict(predictionData))
clf = svm.SVR()
clf.fit(trainingData, trainingScores)
print("SVR")
print(clf.predict(predictionData))
clf = LogisticRegression()
clf.fit(trainingData, trainingScores)
print("LogisticRegression")
print(clf.predict(predictionData))
clf = DecisionTreeClassifier()
clf.fit(trainingData, trainingScores)
print("DecisionTreeClassifier")
print(clf.predict(predictionData))
clf = KNeighborsClassifier()
clf.fit(trainingData, trainingScores)
print("KNeighborsClassifier")
print(clf.predict(predictionData))
clf = LinearDiscriminantAnalysis()
clf.fit(trainingData, trainingScores)
print("LinearDiscriminantAnalysis")
print(clf.predict(predictionData))
clf = GaussianNB()
clf.fit(trainingData, trainingScores)
print("GaussianNB")
print(clf.predict(predictionData))
clf = SVC()
clf.fit(trainingData, trainingScores)
print("SVC")
print(clf.predict(predictionData))

前两个算法运行正常,但在`LogisticRegression`调用中出现以下错误:

root@ubupc1:/home/ouhma# python stack.py 
LinearRegression
[ 15.72023529   6.46666667]
SVR
[ 3.95570063  4.23426243]
Traceback (most recent call last):
  File "stack.py", line 28, in 
    clf.fit(trainingData, trainingScores)
  File "/usr/local/lib/python2.7/dist-packages/sklearn/linear_model/logistic.py", line 1174, in fit
    check_classification_targets(y)
  File "/usr/local/lib/python2.7/dist-packages/sklearn/utils/multiclass.py", line 172, in check_classification_targets
    raise ValueError("Unknown label type: %r" % y_type)
ValueError: Unknown label type: 'continuous'

输入数据与之前的调用相同,所以这里出了什么问题?

顺便问一下,为什么`LinearRegression()`和`SVR()`算法的第一个预测结果有很大差异(15.72 vs 3.95)?

0