LogisticRegression: Unknown label type: 'continuous' using sklearn in python
LogisticRegression: Unknown label type: 'continuous' using sklearn in python
我有以下代码来测试sklearn python库中一些最受欢迎的机器学习算法:
import numpy as np from sklearn import metrics, svm from sklearn.linear_model import LinearRegression from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC trainingData = np.array([[2.3, 4.3, 2.5], [1.3, 5.2, 5.2], [3.3, 2.9, 0.8], [3.1, 4.3, 4.0]]) trainingScores = np.array([3.4, 7.5, 4.5, 1.6]) predictionData = np.array([[2.5, 2.4, 2.7], [2.7, 3.2, 1.2]]) clf = LinearRegression() clf.fit(trainingData, trainingScores) print("LinearRegression") print(clf.predict(predictionData)) clf = svm.SVR() clf.fit(trainingData, trainingScores) print("SVR") print(clf.predict(predictionData)) clf = LogisticRegression() clf.fit(trainingData, trainingScores) print("LogisticRegression") print(clf.predict(predictionData)) clf = DecisionTreeClassifier() clf.fit(trainingData, trainingScores) print("DecisionTreeClassifier") print(clf.predict(predictionData)) clf = KNeighborsClassifier() clf.fit(trainingData, trainingScores) print("KNeighborsClassifier") print(clf.predict(predictionData)) clf = LinearDiscriminantAnalysis() clf.fit(trainingData, trainingScores) print("LinearDiscriminantAnalysis") print(clf.predict(predictionData)) clf = GaussianNB() clf.fit(trainingData, trainingScores) print("GaussianNB") print(clf.predict(predictionData)) clf = SVC() clf.fit(trainingData, trainingScores) print("SVC") print(clf.predict(predictionData))
前两个算法运行正常,但在`LogisticRegression`调用中出现以下错误:
root@ubupc1:/home/ouhma# python stack.py LinearRegression [ 15.72023529 6.46666667] SVR [ 3.95570063 4.23426243] Traceback (most recent call last): File "stack.py", line 28, inclf.fit(trainingData, trainingScores) File "/usr/local/lib/python2.7/dist-packages/sklearn/linear_model/logistic.py", line 1174, in fit check_classification_targets(y) File "/usr/local/lib/python2.7/dist-packages/sklearn/utils/multiclass.py", line 172, in check_classification_targets raise ValueError("Unknown label type: %r" % y_type) ValueError: Unknown label type: 'continuous'
输入数据与之前的调用相同,所以这里出了什么问题?
顺便问一下,为什么`LinearRegression()`和`SVR()`算法的第一个预测结果有很大差异(15.72 vs 3.95)?